Search results
Results From The WOW.Com Content Network
The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the ...
Octet rule is used with Lewis structures for main group elements, especially the lighter ones such as carbon, nitrogen, and oxygen, 18-electron rule [2] in inorganic chemistry and organometallic chemistry of transition metals, Hückel's rule for the π-electrons of aromatic compounds,
Nitrogen is the least electronegative atom of the two, so it is the central atom by multiple criteria. Count valence electrons. Nitrogen has 5 valence electrons; each oxygen has 6, for a total of (6 × 2) + 5 = 17. The ion has a charge of −1, which indicates an extra electron, so the total number of electrons is 18. Connect the atoms by ...
Period 2 elements (carbon, nitrogen, oxygen, fluorine and neon) obey the octet rule in that they need eight electrons to complete their valence shell (lithium and beryllium obey duet rule, boron is electron deficient.), where at most eight electrons can be accommodated: two in the 2s orbital and six in the 2p subshell.
In 1916, Gilbert N. Lewis formulated the octet rule, which concluded an octet of electrons in the outer shell was the most stable arrangement for any atom; this arrangement caused them to be unreactive with other elements since they did not require any more electrons to complete their outer shell. [16]
In chemistry, a nitrene or imene (R−:Ṅ·) is the nitrogen analogue of a carbene. The nitrogen atom is uncharged and monovalent, [1] so it has only 6 electrons in its valence level—two covalent bonded and four non-bonded electrons. It is therefore considered an electrophile due to the unsatisfied octet.
Main-group atoms generally obey the octet rule, while transition metals generally obey the 18-electron rule. The noble gases (He, Ne, Ar, Kr, Xe, Rn) are less reactive than other elements because they already have a noble gas configuration. Oganesson is predicted to be more reactive due to relativistic effects for heavy atoms.
The nitrogen rule states that organic molecules that contain hydrogen, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, or the halogens have an odd nominal mass if they have an odd number of nitrogen atoms or an even mass if they have an even number of nitrogen atoms are present.