When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Occasionally, small peaks can be seen shouldering the main 1 H NMR peaks. These peaks are not the result of proton-proton coupling, but result from the coupling of 1 H atoms to an adjoining carbon-13 (13 C) atom. These small peaks are known as carbon satellites as they are small and appear around the main 1 H peak i.e. satellite (around) to them.

  3. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  4. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    The first and most popular two-dimension NMR experiment is the homonuclear correlation spectroscopy (COSY) sequence, which is used to identify spins which are coupled to each other. It consists of a single RF pulse (p1) followed by the specific evolution time (t1) followed by a second pulse (p2) followed by a measurement period (t2). [7]

  5. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  6. Nuclear magnetic resonance decoupling - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Magnetic_Resonance...

    In order to simplify the spectrum, 13 C NMR spectroscopy is most often run fully proton decoupled, meaning 1 H nuclei in the sample are broadly irradiated to fully decouple them from the 13 C nuclei being analyzed. This full proton decoupling eliminates all coupling with H atoms and thus splitting due to H atoms in natural isotopic abundance ...

  7. Heteronuclear single quantum coherence spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Heteronuclear_single...

    The HSQC experiment is a highly sensitive 2D-NMR experiment and was first described in a 1 H— 15 N system, but is also applicable to other nuclei such as 1 H— 13 C and 1 H— 31 P. The basic scheme of this experiment involves the transfer of magnetization on the proton to the second nucleus, which may be 15 N, 13 C or 31 P, via an INEPT ...

  8. Magnetic inequivalence - Wikipedia

    en.wikipedia.org/wiki/Magnetic_inequivalence

    A classic example is the 1 H-NMR spectrum of 1,1-difluoroethylene. [5] The single 1 H-NMR signal is made complex by the 2 J H-H and two different 3 J H-F splittings. The 19 F-NMR spectrum will look identical. The other two difluoroethylene isomers give similarly complex spectra. [6]

  9. Magnetization transfer - Wikipedia

    en.wikipedia.org/wiki/Magnetization_transfer

    However, using an off-resonance saturation pulse to irradiate protons in the bound (hydration) population can have a detectable effect on the NMR signal of the mobile (free) proton pool. When a population of spins is saturated, such that the magnitude of the macroscopic magnetization vector approaches zero, there is no remaining spin ...