When.com Web Search

  1. Ad

    related to: how to calculate phase margin

Search results

  1. Results From The WOW.Com Content Network
  2. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    A phase margin of 60 degrees is also a magic number because it allows for the fastest settling time when attempting to follow a voltage step input (a Butterworth design). An amplifier with lower phase margin will ring [nb 1] for longer and an amplifier with more phase margin will take a longer time to rise to the voltage step's final level.

  3. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    Figures 8 and 9 illustrate the gain margin and phase margin for a different amount of feedback β. The feedback factor is chosen smaller than in Figure 6 or 7, moving the condition | β A OL | = 1 to lower frequency. In this example, 1 / β = 77 dB, and at low frequencies A FB ≈ 77 dB as well. Figure 8 shows the gain plot.

  4. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    Figure 5: Bode gain plot to find phase margin; scales are logarithmic, so labeled separations are multiplicative factors. For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode ...

  5. Frequency compensation - Wikipedia

    en.wikipedia.org/wiki/Frequency_compensation

    The result is a phase margin of ≈ 45°, depending on the proximity of still higher poles. [ b ] This margin is sufficient to prevent oscillation in the most commonly used feedback configurations. In addition, dominant-pole compensation allows control of overshoot and ringing in the amplifier step response , which can be a more demanding ...

  6. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  7. My Top 10 Portfolio Holdings for 2025

    www.aol.com/top-10-portfolio-holdings-2025...

    My largest holding, brand-name and generic-drug developer Teva Pharmaceutical Industries (NYSE: TEVA), should enter 2025 on a high note after it and Sanofi reported stellar phase 2b data for ...

  8. Qualcomm (QCOM) Q1 2025 Earnings Call Transcript - AOL

    www.aol.com/finance/qualcomm-qcom-q1-2025...

    QTL revenues of $1.5 billion and EBT margin of 75% were in line with expectations. QCT delivered record revenues of $10.1 billion, which was above the high end of our guidance on outperformance ...

  9. Nichols plot - Wikipedia

    en.wikipedia.org/wiki/Nichols_plot

    A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.