When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 ...

  3. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    Machin-like formulas for π can be constructed by finding a set of integers , =, where all the prime factorisations of ⁠ + ⁠, taken together, use a number of distinct primes , and then using either linear algebra or the LLL basis-reduction algorithm to construct linear combinations of arctangents of . For example, in the Størmer formula ...

  4. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    It was not until 1715 that a general method for constructing these series for all functions for which they exist was finally published by Brook Taylor, [8] after whom the series are now named. The Maclaurin series was named after Colin Maclaurin, a Scottish mathematician, who published a special case of the Taylor result in the mid-18th century.

  5. Sectrix of Maclaurin - Wikipedia

    en.wikipedia.org/wiki/Sectrix_of_Maclaurin

    Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin (named for Colin Maclaurin), which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts.

  6. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Here φ is the angle that a line connecting the origin with a point on the unit circle makes with the positive real axis, measured counterclockwise and in radians. The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x .

  9. Colin Maclaurin - Wikipedia

    en.wikipedia.org/wiki/Colin_Maclaurin

    Nevertheless, Maclaurin received credit for his use of the series, and the Taylor series expanded around 0 is sometimes known as the Maclaurin series. [7] Colin Maclaurin (1698–1746) Maclaurin also made significant contributions to the gravitation attraction of ellipsoids, a subject that furthermore attracted the attention of d'Alembert, A.-C ...