Search results
Results From The WOW.Com Content Network
The Weibull distribution interpolates between the exponential distribution with intensity / when = and a Rayleigh distribution of mode = / when =. The Weibull distribution (usually sufficient in reliability engineering ) is a special case of the three parameter exponentiated Weibull distribution where the additional exponent equals 1.
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...
The Gamma distribution, which describes the time until n consecutive rare random events occur in a process with no memory. The Erlang distribution, which is a special case of the gamma distribution with integral shape parameter, developed to predict waiting times in queuing systems; The inverse-gamma distribution; The generalized gamma distribution
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. [1] The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. [2] There are two equivalent parameterizations in common use:
The Fréchet distribution, also known as inverse Weibull distribution, [2] [3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function ( ) = > . where α > 0 is a shape parameter.
The q-Weibull is a generalization of the Weibull, as it extends this distribution to the cases of finite support (q < 1) and to include heavy-tailed distributions (+ +). The q -Weibull is a generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support and adds the κ {\displaystyle ...
This arises because the ordinary Weibull distribution is used for cases that deal with data minima rather than data maxima. The distribution here has an addition parameter compared to the usual form of the Weibull distribution and, in addition, is reversed so that the distribution has an upper bound rather than a lower bound.