When.com Web Search

  1. Ads

    related to: mathematical induction method examples for kids video

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true.

  3. Structural induction - Wikipedia

    en.wikipedia.org/wiki/Structural_induction

    Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .

  4. Category:Mathematical induction - Wikipedia

    en.wikipedia.org/.../Category:Mathematical_induction

    Pages in category "Mathematical induction" The following 8 pages are in this category, out of 8 total. This list may not reflect recent changes. ...

  5. Triviality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Triviality_(mathematics)

    Trivial may also refer to any easy case of a proof, which for the sake of completeness cannot be ignored. For instance, proofs by mathematical induction have two parts: the "base case" which shows that the theorem is true for a particular initial value (such as n = 0 or n = 1), and the inductive step which shows that if the theorem is true for a certain value of n, then it is also true for the ...

  6. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    The truth of de Moivre's theorem can be established by using mathematical induction for natural numbers, and extended to all integers from there. For an integer n, call the following statement S(n): (⁡ + ⁡) = ⁡ + ⁡. For n > 0, we proceed by mathematical induction.

  7. Transfinite induction - Wikipedia

    en.wikipedia.org/wiki/Transfinite_induction

    Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor). Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers.

  8. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    The hockey stick identity confirms, for example: for n=6, r=2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then

  9. Direct proof - Wikipedia

    en.wikipedia.org/wiki/Direct_proof

    For example, if someone could draw a reasonable picture, or give a convincing description, then that met all the criteria for something to be described as a mathematical “fact”. On occasion, analogical arguments took place, or even by “invoking the gods”. The idea that mathematical statements could be proven had not been developed yet ...