Search results
Results From The WOW.Com Content Network
The torque is where is the torsion coefficient of the wire. However, a torque in the opposite direction is also generated by the gravitational pull of the masses. It can be written as a product of the attractive force of a large ball on a small ball and the distance L/2 to the suspension wire.
Torque-free precessions are non-trivial solution for the situation where the torque on the right hand side is zero. When I is not constant in the external reference frame (i.e. the body is moving and its inertia tensor is not constantly diagonal) then I cannot be pulled through the derivative operator acting on L.
The torque-free precession rate of an object with an axis of symmetry, such as a disk, spinning about an axis not aligned with that axis of symmetry can be calculated as follows: [1] = where ω p is the precession rate, ω s is the spin rate about the axis of symmetry, I s is the moment of inertia about the axis of symmetry, I p is moment ...
The power injected by the torque depends only on the instantaneous angular speed – not on whether the angular speed increases, decreases, or remains constant while the torque is being applied (this is equivalent to the linear case where the power injected by a force depends only on the instantaneous speed – not on the resulting acceleration ...
A net torque acting upon an object will produce an angular acceleration of the object according to =, just as F = ma in linear dynamics. The work done by a torque acting on an object equals the magnitude of the torque times the angle through which the torque is applied: W = τ θ . {\displaystyle W=\tau \theta .}
The moment of inertia, denoted by I, measures the extent to which an object resists rotational acceleration about a particular axis; it is the rotational analogue to mass (which determines an object's resistance to linear acceleration). The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2).
Gravity F = mg does work W = mgh along any descending path. In the absence of other forces, gravity results in a constant downward acceleration of every freely moving object. Near Earth's surface the acceleration due to gravity is g = 9.8 m⋅s −2 and the gravitational force on an object of mass m is F g = mg.
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.