When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Another criterion is given by a theorem of Kronecker. [5] [page needed] It says that, if the topological degree of a function f on a rectangle is non-zero, then the rectangle must contain at least one root of f. This criterion is the basis for several root-finding methods, such as those of Stenger [6] and Kearfott. [7]

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An important application is Newton–Raphson division, which can be used to quickly find the reciprocal of a number a, using only multiplication and subtraction, that is to say the number x such that ⁠ 1 / x ⁠ = a. We can rephrase that as finding the zero of f(x) = ⁠ 1 / x ⁠ − a. We have f ′ (x) = − ⁠ 1 / x 2 ⁠. Newton's ...

  4. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    It follows that the solutions of such an equation are exactly the zeros of the function . In other words, a "zero of a function" is precisely a "solution of the equation obtained by equating the function to 0", and the study of zeros of functions is exactly the same as the study of solutions of equations.

  5. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial ( x – r ) can be factored out of the polynomial using polynomial long division , resulting in a polynomial of lower degree ...

  6. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    The theorem is usually used to simplify the problem of locating zeros, as follows. Given an analytic function, we write it as the sum of two parts, one of which is simpler and grows faster than (thus dominates) the other part. We can then locate the zeros by looking at only the dominating part.

  7. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.

  8. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  9. Chebyshev nodes - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_nodes

    Chebyshev nodes of both kinds from = to =.. For a given positive integer the Chebyshev nodes of the first kind in the open interval (,) are = ⁡ (+), =, …,. These are the roots of the Chebyshev polynomials of the first kind with degree .