When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations, ˙ = ˙ = ⁡ ˙ = ⁡ ⁡ ⁡ ˙ = Momentum ⁠ ⁠, which corresponds to the vertical component of angular momentum ⁠ = ⁡ ⁡ ˙ ⁠, is a constant of motion. That is a consequence of the rotational symmetry of the ...

  3. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  4. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

  5. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Eliminating the angular velocity dθ/dt from this radial equation, [47] ¨ = +. which is the equation of motion for a one-dimensional problem in which a particle of mass μ is subjected to the inward central force −dV/dr and a second outward force, called in this context the (Lagrangian) centrifugal force (see centrifugal force#Other uses of ...

  6. Geodesics as Hamiltonian flows - Wikipedia

    en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows

    In mathematics, the geodesic equations are second-order non-linear differential equations, and are commonly presented in the form of Euler–Lagrange equations of motion. However, they can also be presented as a set of coupled first-order equations, in the form of Hamilton's equations. This latter formulation is developed in this article.

  7. Hamiltonian system - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_system

    A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.

  8. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    Hamilton's equations of motion have an equivalent expression in terms of the Poisson bracket. This may be most directly demonstrated in an explicit coordinate frame. Suppose that (,,) is a function on the solution's trajectory-m

  9. Liouville's theorem (Hamiltonian) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    Whereas the motion of an individual member of the ensemble is given by Hamilton's equations, Liouville's equation describes the flow of the whole distribution. The motion is analogous to a dye in an incompressible fluid. The Liouville equation describes the time evolution of the phase space distribution function.