When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).

  3. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions. If there exists an optimal solution, then there exists an optimal BFS.

  4. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    In linear programming problems with n variables, a necessary but insufficient condition for the feasible set to be bounded is that the number of constraints be at least n + 1 (as illustrated by the above example). If the feasible set is unbounded, there may or may not be an optimum, depending on the specifics of the objective function.

  5. Basic solution (linear programming) - Wikipedia

    en.wikipedia.org/wiki/Basic_solution_(Linear...

    In linear programming, a discipline within applied mathematics, a basic solution is any solution of a linear programming problem satisfying certain specified technical conditions. For a polyhedron P {\displaystyle P} and a vector x ∗ ∈ R n {\displaystyle \mathbf {x} ^{*}\in \mathbb {R} ^{n}} , x ∗ {\displaystyle \mathbf {x} ^{*}} is a ...

  6. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    There exist y 1, y 2 such that 6y 1 + 3y 2 ≥ 0, 4y 1 ≥ 0, and b 1 y 1 + b 2 y 2 < 0. Here is a proof of the lemma in this special case: If b 2 ≥ 0 and b 1 − 2b 2 ≥ 0, then option 1 is true, since the solution of the linear equations is = and =.

  7. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    There is a close connection between linear programming problems, eigenequations, and von Neumann's general equilibrium model. The solution to a linear programming problem can be regarded as a generalized eigenvector. The eigenequations of a square matrix are as follows:

  8. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    Other algorithms for solving linear-programming problems are described in the linear-programming article. Another basis-exchange pivoting algorithm is the criss-cross algorithm . [ 41 ] [ 42 ] There are polynomial-time algorithms for linear programming that use interior point methods: these include Khachiyan 's ellipsoidal algorithm , Karmarkar ...

  9. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Then row reductions are applied to gain a final solution. The value of M must be chosen sufficiently large so that the artificial variable would not be part of any feasible solution. For a sufficiently large M, the optimal solution contains any artificial variables in the basis (i.e. positive values) if and only if the problem is not feasible.