Search results
Results From The WOW.Com Content Network
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...
A directed cycle graph of length 8. A directed cycle graph is a directed version of a cycle graph, with all the edges being oriented in the same direction. In a directed graph, a set of edges which contains at least one edge (or arc) from each directed cycle is called a feedback arc set.
The cycle graph of a group is not uniquely determined up to graph isomorphism; nor does it uniquely determine the group up to group isomorphism. That is, the graph obtained depends on the set of generators chosen, and two different groups (with chosen sets of generators) can generate the same cycle graph. [2]
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...
In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles. A fundamental cycle basis may be formed from any ...
A k-cycle is a cycle of length k; for instance a 2-cycle is a digon and a 3-cycle is a triangle. A cycle graph is a graph that is itself a simple cycle; a cycle graph with n vertices is commonly denoted C n. 2. The cycle space is a vector space generated by the simple cycles in a graph, often over the field of 2 elements but also over other fields.
In mathematics, a cyclic graph may mean a graph that contains a cycle, or a graph that is a cycle, with varying definitions of cycles. See: Cycle (graph theory), a cycle in a graph; Forest (graph theory), an undirected graph with no cycles; Biconnected graph, an undirected graph in which every edge belongs to a cycle
It states that a finite undirected graph is planar if and only if the graph has a cycle basis in which each edge of the graph participates in at most two basis cycles. In a planar graph, a cycle basis formed by the set of bounded faces of an embedding necessarily has this property: each edge participates only in the basis cycles for the two ...