When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The information gain in decision trees (,), which is equal to the difference between the entropy of and the conditional entropy of given , quantifies the expected information, or the reduction in entropy, from additionally knowing the value of an attribute . The information gain is used to identify which attributes of the dataset provide the ...

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a method commonly used in data mining. [3] The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples.

  5. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    Entropy diagram [2] A simple decision tree. Now, it is clear that information gain is the measure of how much information a feature provides about a class. Let's visualize information gain in a decision tree as shown in the right: The node t is the parent node, and the sub-nodes t L and t R are child nodes.

  6. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm , and is typically used in the machine learning and natural language processing domains.

  7. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  8. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .

  9. Decision tree model - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_model

    Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.