Search results
Results From The WOW.Com Content Network
Plutonium could be produced by irradiating uranium-238 in a nuclear reactor, [4] but developing and building a reactor was a task for the Manhattan Project physicists. The task for the chemists was to develop a process to separate plutonium from the other fission products produced in the reactor, to do so on an industrial scale at a time when plutonium could be produced only in microscopic ...
Plutonium recovered from LWR spent fuel, while not weapons grade, can be used to produce nuclear weapons at all levels of sophistication, [25] though in simple designs it may produce only a fizzle yield. [26] Weapons made with reactor-grade plutonium would require special cooling to keep them in storage and ready for use. [27]
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
The pits of the first nuclear weapons were solid, with an urchin neutron initiator in their center. The Gadget and Fat Man used pits made of 6.2 kg of solid hot pressed plutonium-gallium alloy (at 400 °C and 200 MPa in steel dies – 750 °F and 29,000 psi) half-spheres of 9.2 cm (3.6 in) diameter, with a 2.5 cm (1 in) internal cavity for the initiator.
The first large-scale nuclear reactors were built during World War II.These reactors were designed for the production of plutonium for use in nuclear weapons.The only reprocessing required, therefore, was the extraction of the plutonium (free of fission-product contamination) from the spent natural uranium fuel.
Watchdogs are raising new concerns about legacy contamination in Los Alamos, the birthplace of the atomic bomb and home to a renewed effort to manufacture key components for nuclear weapons. A ...
In February 1940, Glenn Seaborg and Edwin McMillan produced plutonium-239 by bombarding uranium with deuterons. This produced neptunium, element 93, which underwent beta-decay to form a new element, plutonium, with 94 protons. [4] Kennedy built a series of detectors and counters to verify the presence of plutonium.
The Hanford Site occupies 586 square miles (1,518 km 2) – roughly equivalent to half the total area of Rhode Island – within Benton County, Washington. [1] [2] It is a desert environment receiving less than ten inches (250 mm) of annual precipitation, covered mostly by shrub-steppe vegetation.