Ads
related to: osculating circle formula worksheet pdf printable free
Search results
Results From The WOW.Com Content Network
An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2] The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.
The locus of the centers of all the osculating circles (also called "centers of curvature") is the evolute of the curve. If the derivative of curvature κ'(t) is zero, then the osculating circle will have 3rd-order contact and the curve is said to have a vertex. The evolute will have a cusp at the center of the circle.
Examples of osculating curves of different orders include: The tangent line to a curve C at a point p, the osculating curve from the family of straight lines. The tangent line shares its first derivative with C and therefore has first-order contact with C. [1] [2] [4] The osculating circle to C at p, the osculating curve from the family of circles.
Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle.. To travel along a circular path, an object needs to be subject to a centripetal acceleration (for example: the Moon circles around the Earth because of gravity; a car turns its front wheels inward to generate a centripetal force).
The osculating circle to the curve is centered at the centre of curvature. Cauchy defined the center of curvature C as the intersection point of two infinitely close normal lines to the curve. [1] The locus of centers of curvature for each point on the curve comprise the evolute of the curve.
Osculating circles of the Archimedean spiral, tangent to the spiral and having the same curvature at the tangent point. The spiral itself is not drawn, but can be seen as the points where the circles are especially close to each other.
There exists a circle in the osculating plane tangent to γ(s) whose Taylor series to second order at the point of contact agrees with that of γ(s). This is the osculating circle to the curve. The radius of the circle R(s) is called the radius of curvature, and the curvature is the reciprocal of the radius of curvature:
osculating circle; osculating curve; osculating plane; osculating orbit; osculating sphere; The obsolete Quinarian system of biological classification attempted to group creatures into circles which could touch or overlap with adjacent circles, a phenomenon called 'osculation'.