When.com Web Search

  1. Ad

    related to: area of weird shapes calculator with points and numbers of sides

Search results

  1. Results From The WOW.Com Content Network
  2. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Therefore, it has the same number of squares as five cubes. Two clusters of faces of the bilunabirotunda, the lunes (each lune featuring two triangles adjacent to opposite sides of one square), can be aligned with a congruent patch of faces on the rhombicosidodecahedron. If two bilunabirotundae are aligned this way on opposite sides of the ...

  3. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    Pentagon – 5 sides; Hexagon – 6 sides Lemoine hexagon; Heptagon – 7 sides; Octagon – 8 sides; Nonagon – 9 sides; Decagon – 10 sides; Hendecagon – 11 sides; Dodecagon – 12 sides; Tridecagon – 13 sides; Tetradecagon – 14 sides; Pentadecagon – 15 sides; Hexadecagon – 16 sides; Heptadecagon – 17 sides; Octadecagon – 18 ...

  4. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Table of Shapes Section Sub-Section Sup-Section Name Algebraic Curves ¿ Curves ¿ Curves: Cubic Plane Curve: Quartic Plane Curve: Rational Curves: Degree 2: Conic Section(s) Unit Circle: Unit Hyperbola: Degree 3: Folium of Descartes: Cissoid of Diocles: Conchoid of de Sluze: Right Strophoid: Semicubical Parabola: Serpentine Curve: Trident ...

  5. Heptagon - Wikipedia

    en.wikipedia.org/wiki/Heptagon

    The area (A) of a regular heptagon of side length a is given by: A = 7 4 a 2 cot ⁡ π 7 ≃ 3.634 a 2 . {\displaystyle A={\frac {7}{4}}a^{2}\cot {\frac {\pi }{7}}\simeq 3.634a^{2}.} This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with vertices at the center and at the heptagon's vertices, and then ...

  6. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  7. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + ⁠ 96 / 2 ⁠ − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.

  8. Reuleaux triangle - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_triangle

    Relatives of the Reuleaux triangle arise in the problem of finding the minimum perimeter shape that encloses a fixed amount of area and includes three specified points in the plane. For a wide range of choices of the area parameter, the optimal solution to this problem will be a curved triangle whose three sides are circular arcs with equal radii.

  9. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]