Search results
Results From The WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [ 6 ] Interval scale is also known as numerical. [ 6 ]
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [ 1 ] : 2 These data exist on an ordinal scale , one of four levels of measurement described by S. S. Stevens in 1946.
An example is a preference ranking. Some data are measured at the interval level. Numbers indicate the magnitude of difference between items, but there is no absolute zero point. Examples are attitude scales and opinion scales. Some data are measured at the ratio level. Numbers indicate magnitude of difference and there is a fixed zero point.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
In statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant.
As an example of a database directed towards just one organism, but that contains much data about it, is the Arabidopsis thaliana genetic and molecular database – TAIR. [23] Phytozome, [ 24 ] in turn, stores the assemblies and annotation files of dozen of plant genomes, also containing visualization and analysis tools.
Nominal data is often compared to ordinal and ratio data to determine if individual data points influence the behavior of quantitatively driven datasets. [1] [4] For example, the effect of race (nominal) on income (ratio) could be investigated by regressing the level of income upon one or more dummy variables that specify race. When nominal ...