When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Knowledge distillation - Wikipedia

    en.wikipedia.org/wiki/Knowledge_distillation

    In machine learning, knowledge distillation or model distillation is the process of transferring knowledge from a large model to a smaller one. While large models (such as very deep neural networks or ensembles of many models) have more knowledge capacity than small models, this capacity might not be fully utilized. It can be just as ...

  3. Cheaper K-Cups: Good for Us, But Bad for Keurig's Maker - AOL

    www.aol.com/news/2012-05-10-cheaper-k-cups...

    Green Mountain owns many of the popular K-Cup brands. From Timothy's to Gloria Jean's to Tully's, the company has been snapping up some regional brands behind some of the early K-Cup favorites.

  4. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  6. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    In the field of multivariate statistics, kernel principal component analysis (kernel PCA) [1] is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are performed in a reproducing kernel Hilbert space.

  7. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    This includes, for example, early stopping, using a robust loss function, and discarding outliers. Implicit regularization is essentially ubiquitous in modern machine learning approaches, including stochastic gradient descent for training deep neural networks, and ensemble methods (such as random forests and gradient boosted trees).

  8. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

  9. Correlation clustering - Wikipedia

    en.wikipedia.org/wiki/Correlation_clustering

    Different methods for correlation clustering of this type are discussed in [13] and the relationship to different types of clustering is discussed in. [14] See also Clustering high-dimensional data. Correlation clustering (according to this definition) can be shown to be closely related to biclustering. As in biclustering, the goal is to ...