Search results
Results From The WOW.Com Content Network
Using the orthonormality properties of the real unit-power spherical harmonic functions, it is straightforward to verify that the total power of a function defined on the unit sphere is related to its spectral coefficients by a generalization of Parseval's theorem (here, the theorem is stated for Schmidt semi-normalized harmonics, the ...
This is a table of orthonormalized spherical harmonics that employ the Condon-Shortley phase up to degree =. Some of these formulas are expressed in terms of the Cartesian expansion of the spherical harmonics into polynomials in x , y , z , and r .
In many applications, vector spherical harmonics are defined as fundamental set of the solutions of vector Helmholtz equation in spherical coordinates. [ 6 ] [ 7 ] In this case, vector spherical harmonics are generated by scalar functions, which are solutions of scalar Helmholtz equation with the wavevector k {\displaystyle \mathbf {k} } .
A weakly harmonic function coincides almost everywhere with a strongly harmonic function, and is in particular smooth. A weakly harmonic distribution is precisely the distribution associated to a strongly harmonic function, and so also is smooth. This is Weyl's lemma. There are other weak formulations of Laplace's equation that are often useful.
Bessel functions for integer are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer α {\displaystyle \alpha } are obtained when solving the Helmholtz equation in spherical coordinates .
The zonal spherical harmonics are rotationally invariant, meaning that () = () for every orthogonal transformation R.Conversely, any function f(x,y) on S n−1 ×S n−1 that is a spherical harmonic in y for each fixed x, and that satisfies this invariance property, is a constant multiple of the degree ℓ zonal harmonic.
The spherical harmonic functions form a complete orthonormal set of functions in the sense of Fourier series. Workers in the fields of geodesy, geomagnetism and spectral analysis use a different phase and normalization factor than given here (see spherical harmonics ).
Unlike ordinary spherical harmonics, the spin-weighted harmonics are U(1) gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree l , just like ordinary spherical harmonics, but have an additional spin weight s that reflects the additional U(1) symmetry.