When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    For example, choosing a basis, a symmetric algebra satisfies the universal property and so is a polynomial ring. To give an example, let S be the ring of all functions from R to itself; the addition and the multiplication are those of functions. Let x be the identity function.

  3. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of commutative algebra, a major area of modern mathematics. Because these three fields (algebraic geometry, algebraic number theory and commutative ...

  4. Characteristic (algebra) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_(algebra)

    For example, if p is prime and q(X) is an irreducible polynomial with coefficients in the field with p elements, then the quotient ring [] / (()) is a field of characteristic p. Another example: The field C {\displaystyle \mathbb {C} } of complex numbers contains Z {\displaystyle \mathbb {Z} } , so the characteristic of C {\displaystyle \mathbb ...

  5. Polynomial ring - Wikipedia

    en.wikipedia.org/wiki/Polynomial_ring

    The definition of a polynomial ring can be generalised by relaxing the requirement that the algebraic structure R be a field or a ring to the requirement that R only be a semifield or rig; the resulting polynomial structure/extension R[X] is a polynomial rig.

  6. Associative algebra - Wikipedia

    en.wikipedia.org/wiki/Associative_algebra

    The definition is equivalent to saying that a unital associative R-algebra is a monoid object in R-Mod (the monoidal category of R-modules). By definition, a ring is a monoid object in the category of abelian groups; thus, the notion of an associative algebra is obtained by replacing the category of abelian groups with the category of modules.

  7. Glossary of ring theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_ring_theory

    This extends the definition for commutative rings. 4. prime ring : A nonzero ring R is called a prime ring if for any two elements a and b of R with aRb = 0, we have either a = 0 or b = 0. This is equivalent to saying that the zero ideal is a prime ideal (in the noncommutative sense.) Every simple ring and every domain is a prime ring. primitive 1.

  8. Group ring - Wikipedia

    en.wikipedia.org/wiki/Group_ring

    Let be a group, written multiplicatively, and let be a ring. The group ring of over , which we will denote by [], or simply , is the set of mappings : of finite support (() is nonzero for only finitely many elements ), where the module scalar product of a scalar in and a mapping is defined as the mapping (), and the module group sum of two mappings and is defined as the mapping () + ().

  9. Ring of sets - Wikipedia

    en.wikipedia.org/wiki/Ring_of_sets

    In mathematics, there are two different notions of a ring of sets, both referring to certain families of sets. In order theory , a nonempty family of sets R {\displaystyle {\mathcal {R}}} is called a ring (of sets) if it is closed under union and intersection . [ 1 ]