Search results
Results From The WOW.Com Content Network
Some programming languages (or compilers for them) provide a built-in (primitive) or library decimal data type to represent non-repeating decimal fractions like 0.3 and −1.17 without rounding, and to do arithmetic on them. Examples are the decimal.Decimal or num7.Num type of Python, and analogous types provided by other languages.
The fractional part or decimal part [1] of a non‐negative real number is the excess beyond that number's integer part. The latter is defined as the largest integer not greater than x, called floor of x or ⌊ ⌋. Then, the fractional part can be formulated as a difference:
Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.
In computer science, an integer literal is a kind of literal for an integer whose value is directly represented in source code.For example, in the assignment statement x = 1, the string 1 is an integer literal indicating the value 1, while in the statement x = 0x10 the string 0x10 is an integer literal indicating the value 16, which is represented by 10 in hexadecimal (indicated by the 0x prefix).
A decimal separator is a symbol that separates the integer part from the fractional part of a number written in decimal form. Different countries officially designate different symbols for use as the separator. The choice of symbol also affects the choice of symbol for the thousands separator used in digit grouping.
Truncation of positive real numbers can be done using the floor function. Given a number x ∈ R + {\displaystyle x\in \mathbb {R} _{+}} to be truncated and n ∈ N 0 {\displaystyle n\in \mathbb {N} _{0}} , the number of elements to be kept behind the decimal point, the truncated value of x is
Example: the decimal number () = (¯) can be rearranged into + ⏟ … Since the 53rd bit to the right of the binary point is a 1 and is followed by other nonzero bits, the round-to-nearest rule requires rounding up, that is, add 1 bit to the 52nd bit.
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".