When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    The chance of fissioning on absorption of a thermal neutron is about 92%; the capture-to-fission ratio of 233 U, therefore, is about 1:12 – which is better than the corresponding capture vs. fission ratios of 235 U (about 1:6), or 239 Pu or 241 Pu (both about 1:3).

  3. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    Fission occurs when a heavy nuclide such as uranium-235 absorbs a neutron and breaks into nuclides of lighter elements such as barium or krypton, usually with the release of additional neutrons. Like all nuclides with a high atomic number, these uranium nuclei require many neutrons to bolster their stability, so they have a large neutron-proton ...

  4. Uranium-236 - Wikipedia

    en.wikipedia.org/wiki/Uranium-236

    The fissile isotope uranium-235 fuels most nuclear reactors.When 235 U absorbs a thermal neutron, one of two processes can occur.About 85.5% of the time, it will fission; about 14.5% of the time, it will not fission, instead emitting gamma radiation and yielding 236 U. [1] [2] Thus, the yield of 236 U per 235 U+n reaction is about 14.5%, and the yield of fission products is about 85.5%.

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    These types of decay involve the nuclear capture of electrons or emission of electrons or positrons, and thus acts to move a nucleus toward the ratio of neutrons to protons that has the least energy for a given total number of nucleons. This consequently produces a more stable (lower energy) nucleus.

  6. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    In a nuclear reactor, the neutron population at any instant is a function of the rate of neutron production (due to fission processes) and the rate of neutron losses (due to non-fission absorption mechanisms and leakage from the system). When a reactor's neutron population remains steady from one generation to the next (creating as many new ...

  7. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    Its (fission) nuclear cross section for slow thermal neutron is about 504.81 barns. For fast neutrons it is on the order of 1 barn. At thermal energy levels, about 5 of 6 neutron absorptions result in fission and 1 of 6 result in neutron capture forming uranium-236. [31] The fission-to-capture ratio improves for faster neutrons.

  8. Pressurized water reactor - Wikipedia

    en.wikipedia.org/wiki/Pressurized_water_reactor

    A less moderated neutron energy spectrum does worsen the capture/fission ratio for 235 U and especially 239 Pu, meaning that more fissile nuclei fail to fission on neutron absorption and instead capture the neutron to become a heavier nonfissile isotope, wasting one or more neutrons and increasing accumulation of heavy transuranic actinides ...

  9. Breeder reactor - Wikipedia

    en.wikipedia.org/wiki/Breeder_reactor

    The U-236 comes from the non-fission capture reaction where U-235 absorbs a neutron but releases only a high energy gamma ray instead of undergoing fission. The physical behavior of the fission products is markedly different from that of the actinides. In particular, fission products do not undergo fission and therefore cannot be used as ...