Ad
related to: formulas for equilateral triangle area
Search results
Results From The WOW.Com Content Network
In general, the area of a triangle is half the product of its base and height. The formula of the area of an equilateral triangle can be obtained by substituting the altitude formula. [7] Another way to prove the area of an equilateral triangle is by using the trigonometric function. The area of a triangle is formulated as the half product of ...
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length , which has area 1. There are several ways to calculate the area of an arbitrary triangle.
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
The triangle of largest area of all those inscribed in a given circle is equilateral; and the triangle of smallest area of all those circumscribed around a given circle is equilateral. [ 36 ] The ratio of the area of the incircle to the area of an equilateral triangle, π 3 3 {\displaystyle {\frac {\pi }{3{\sqrt {3}}}}} , is larger than that of ...
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [1] [2] Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.
The surface area of a regular tetrahedron is four times the area of an equilateral triangle: [6] = =. The height of a regular tetrahedron is 6 3 a {\textstyle {\frac {\sqrt {6}}{3}}a} . [ 7 ] The volume of a regular tetrahedron can be ascertained similarly as the other pyramids, one-third of the base and its height.