When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binding site - Wikipedia

    en.wikipedia.org/wiki/Binding_site

    Binding sites incur functional changes in a number of contexts, including enzyme catalysis, molecular pathway signaling, homeostatic regulation, and physiological function. Electric charge , steric shape and geometry of the site selectively allow for highly specific ligands to bind, activating a particular cascade of cellular interactions the ...

  3. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site. Although the active site occupies only ~10–20% of the volume of an enzyme, [ 1 ] : 19 it is the most important part as it directly catalyzes the chemical ...

  4. Enzyme inhibitor - Wikipedia

    en.wikipedia.org/wiki/Enzyme_inhibitor

    An enzyme inhibitor stops ("inhibits") this process, either by binding to the enzyme's active site (thus preventing the substrate itself from binding) or by binding to another site on the enzyme such that the enzyme's catalysis of the reaction is blocked. Enzyme inhibitors may bind reversibly or irreversibly.

  5. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    The catalytic site and binding site together compose the enzyme's active site. The remaining majority of the enzyme structure serves to maintain the precise orientation and dynamics of the active site. [30] In some enzymes, no amino acids are directly involved in catalysis; instead, the enzyme contains sites to bind and orient catalytic ...

  6. Allosteric regulation - Wikipedia

    en.wikipedia.org/wiki/Allosteric_regulation

    Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.

  7. Allosteric enzyme - Wikipedia

    en.wikipedia.org/wiki/Allosteric_enzyme

    Allosteric enzymes need not be oligomers as previously thought, [1] and in fact many systems have demonstrated allostery within single enzymes. [2] In biochemistry, allosteric regulation (or allosteric control) is the regulation of a protein by binding an effector molecule at a site other than the enzyme's active site.

  8. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    Enzyme changes shape by induced fit upon substrate binding to form enzyme-substrate complex. Hexokinase has a large induced fit motion that closes over the substrates adenosine triphosphate and xylose. Binding sites in blue, substrates in black and Mg 2+ cofactor in yellow.

  9. Catalytic triad - Wikipedia

    en.wikipedia.org/wiki/Catalytic_triad

    The enzyme TEV protease [a] contains an example of a catalytic triad of residues (red) in its active site. The triad consists of an aspartate , histidine and cysteine (nucleophile). The substrate (black) is bound by the binding site to orient it next to the triad.