Search results
Results From The WOW.Com Content Network
The red subset = {,,,,,} has one greatest element, viz. 30, and one least element, viz. 1. These elements are also maximal and minimal elements , respectively, of the red subset. In mathematics , especially in order theory , the greatest element of a subset S {\displaystyle S} of a partially ordered set (poset) is an element of S {\displaystyle ...
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element. In mathematics , especially in order theory , a maximal element of a subset S {\displaystyle S} of some preordered set is an element of S {\displaystyle S} that is not smaller than any other element in S ...
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
In contrast, 0 is the number that is divided by all other numbers. Hence it is the greatest element of the order. Other frequent terms for the least and greatest elements is bottom and top or zero and unit. Least and greatest elements may fail to exist, as the example of the real numbers shows. But if they exist, they are always unique.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.