Search results
Results From The WOW.Com Content Network
In the long term, the greatest changes in the Solar System will come from changes in the Sun itself as it ages. As the Sun burns through its hydrogen fuel supply, it gets hotter and burns the remaining fuel even faster. As a result, the Sun is growing brighter at a rate of ten percent every 1.1 billion years. [117]
Earth's complete condensation included a roughly 300 M E gas/ice shell that compressed the rocky kernel to about 66 percent of Earth's present diameter. T Tauri eruptions of the Sun stripped the gases away from the inner planets. Mercury was incompletely condensed, and a portion of its gases was stripped away and transported to the region ...
Before 4.56 Ga, the presolar nebula was a dense molecular cloud consisting of hydrogen and helium gas with dispersed dust grains. When the Sun ignited and entered its T-Tauri phase, it melted nearby dust grains. Some of the melt droplets were incorporated into chondrites as small spherical objects called chondrules. [12]
Iron group elements originate mostly from the nuclear-statistical equilibrium process in thermonuclear supernova explosions. Elements beyond iron are made in high-mass stars with slow neutron capture , and by rapid neutron capture in the r-process, with origins being debated among rare supernova variants and compact-star collisions. Note that ...
The first eon in Earth's history, the Hadean, begins with the Earth's formation and is followed by the Archean eon at 3.8 Ga. [2]: 145 The oldest rocks found on Earth date to about 4.0 Ga, and the oldest detrital zircon crystals in rocks to about 4.4 Ga, [34] [35] [36] soon after the formation of the Earth's crust and the Earth itself.
Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System. Initially, Earth was molten due to extreme volcanism and frequent collisions with other bodies.
This is an accepted version of this page This is the latest accepted revision, reviewed on 17 November 2024. Development of the table of chemical elements The American chemist Glenn T. Seaborg —after whom the element seaborgium is named—standing in front of a periodic table, May 19, 1950 Part of a series on the Periodic table Periodic table forms 18-column 32-column Alternative and ...
41 of the 118 known elements have names associated with, or specifically named for, places around the world or among astronomical objects. 32 of these have names tied to the places on Earth, and the other nine are named after to Solar System objects: helium for the Sun; tellurium for the Earth; selenium for the Moon; mercury (indirectly), uranium, neptunium and plutonium after their respective ...