Ads
related to: algebra factoring exponents
Search results
Results From The WOW.Com Content Network
In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property , a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials .
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [26]
Indeed, in this proposition the exponents are all equal to one, so nothing is said for the general case. While Euclid took the first step on the way to the existence of prime factorization, Kamāl al-Dīn al-Fārisī took the final step [ 8 ] and stated for the first time the fundamental theorem of arithmetic.
first prime exponent greater than three 6: Zenzicubic: z& square of cubes 7: Second sursolid: Bsz: second prime exponent greater than three 8: Zenzizenzizenzic (quadratoquadratoquadratum) zzz: square of squared squares 9: Cubicubic && cube of cubes 10: Square of first sursolid: zsz: square of five 11: Third sursolid: csz: third prime number ...
The exponent on an indeterminate in a term is called the degree of that indeterminate in that term; the degree of the term is the sum of the degrees of the indeterminates in that term, and the degree of a polynomial is the largest degree of any term with nonzero coefficient. [8]
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.