When.com Web Search

  1. Ads

    related to: algebra factoring machine learning

Search results

  1. Results From The WOW.Com Content Network
  2. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    Other extensions of NMF include joint factorization of several data matrices and tensors where some factors are shared. Such models are useful for sensor fusion and relational learning. [51] NMF is an instance of nonnegative quadratic programming, just like the support vector machine (SVM). However, SVM and NMF are related at a more intimate ...

  3. Matrix factorization (recommender systems) - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization...

    In recent years a number of neural and deep-learning techniques have been proposed, some of which generalize traditional Matrix factorization algorithms via a non-linear neural architecture. [19] While deep learning has been applied to many different scenarios: context-aware, sequence-aware, social tagging etc. its real effectiveness when used ...

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    LU decomposition on Math-Linux. LU decomposition at Holistic Numerical Methods Institute; LU matrix factorization. MATLAB reference. Computer code. LAPACK is a collection of FORTRAN subroutines for solving dense linear algebra problems; ALGLIB includes a partial port of the LAPACK to C++, C#, Delphi, etc. C++ code, Prof. J. Loomis, University ...

  5. Accelerated Linear Algebra - Wikipedia

    en.wikipedia.org/wiki/Accelerated_Linear_Algebra

    XLA (Accelerated Linear Algebra) is an open-source compiler for machine learning developed by the OpenXLA project. [1] XLA is designed to improve the performance of machine learning models by optimizing the computation graphs at a lower level, making it particularly useful for large-scale computations and high-performance machine learning models.

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).