When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Friis formulas for noise - Wikipedia

    en.wikipedia.org/wiki/Friis_formulas_for_noise

    Friis formula or Friis's formula (sometimes Friis' formula), named after Danish-American electrical engineer Harald T. Friis, is either of two formulas used in telecommunications engineering to calculate the signal-to-noise ratio of a multistage amplifier. One relates to noise factor while the other relates to noise temperature.

  3. Harald T. Friis - Wikipedia

    en.wikipedia.org/wiki/Harald_T._Friis

    Harald Trap Friis (22 February 1893 – 15 June 1976), who published as H. T. Friis, was a Danish-American radio engineer whose work at Bell Laboratories included pioneering contributions to radio propagation, radio astronomy, and radar. [1]

  4. Friis transmission equation - Wikipedia

    en.wikipedia.org/wiki/Friis_transmission_equation

    The Friis transmission formula is used in telecommunications engineering, equating the power at the terminals of a receive antenna as the product of power density of the incident wave and the effective aperture of the receiving antenna under idealized conditions given another antenna some distance away transmitting a known amount of power. [1]

  5. Friis formula - Wikipedia

    en.wikipedia.org/wiki/Friis_formula

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  6. Horn antenna - Wikipedia

    en.wikipedia.org/wiki/Horn_antenna

    A type of antenna that combines a horn with a parabolic reflector is known as a Hogg-horn, or horn-reflector antenna, invented by Alfred C. Beck and Harald T. Friis in 1941 [20] and further developed by David C. Hogg at Bell Labs in 1961. [21] It is also referred to as the "sugar scoop" due to its characteristic shape.

  7. Talk:Noise figure - Wikipedia

    en.wikipedia.org/wiki/Talk:Noise_figure

    "Attenuators have a noise factor F equal to their attenuation ratio L" I just can't see how this can be correct, for example an attenuator made of capacitors (voltage divider) will not introduce any new noise so the SNRin and SNRout will be the same, therfore the noise figure of such an attenuator will be zero, I am sure that there are many other examples where the NF is zero or irrelevant.

  8. Noise figure - Wikipedia

    en.wikipedia.org/wiki/Noise_figure

    Noise figure (NF) and noise factor (F) are figures of merit that indicate degradation of the signal-to-noise ratio (SNR) that is caused by components in a signal chain.These figures of merit are used to evaluate the performance of an amplifier or a radio receiver, with lower values indicating better performance.

  9. Noise temperature - Wikipedia

    en.wikipedia.org/wiki/Noise_temperature

    The noise factor (a linear term) is more often expressed as the noise figure (in decibels) using the conversion: = ⁡ The noise figure can also be seen as the decrease in signal-to-noise ratio (SNR) caused by passing a signal through a system if the original signal had a noise temperature of 290 K. This is a common way of expressing the noise ...