Search results
Results From The WOW.Com Content Network
where ƒ is a smooth function on [−1, 1] and α, β > −1. The interval [−1, 1] can be replaced by any other interval by a linear transformation. Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points.
The template is intended for conversion of heights specified in either metres or in feet and inches. Template parameters [Edit template data] Parameter Description Type Status Metres m metre metres meter meters The height in metres. Do not use if feet and inches are specified. Number optional Centimetres cm centimetre centimetres centimeter centimeters The height in centimetres. Do not use if ...
Unique global maximum over the positive real numbers at x = 1/e. x 3 /3 − x: First derivative x 2 − 1 and second derivative 2x. Setting the first derivative to 0 and solving for x gives stationary points at −1 and +1. From the sign of the second derivative, we can see that −1 is a local maximum and +1 is a local minimum.
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
Then each function ƒ n is continuous, but the sequence converges pointwise to the discontinuous function ƒ that is zero on [0, 1) but has ƒ(1) = 1. Another example is shown in the adjacent image. In terms of function spaces, the uniform limit theorem says that the space C(X, Y) of all continuous functions from a topological space X to a ...
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. [1]
In mathematical optimization, the fundamental theorem of linear programming states, in a weak formulation, that the maxima and minima of a linear function over a convex polygonal region occur at the region's corners.