When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product of and a polynomial in of degree one less than the degree of .

  3. Remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Remainder_Theorem

    Remainder theorem may refer to: Polynomial remainder theorem; Chinese remainder theorem This page was last edited on 29 December 2019, at 22:03 (UTC). Text is ...

  4. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  5. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  6. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    The Chinese remainder theorem appears as an exercise [16] in Sunzi Suanjing (between the third and fifth centuries). [17] (There is one important step glossed over in Sunzi's solution: [note 4] it is the problem that was later solved by Āryabhaṭa's Kuṭṭaka – see below.)

  7. Hasse principle - Wikipedia

    en.wikipedia.org/wiki/Hasse_principle

    Counterexamples by Fujiwara and Sudo show that the Hasse–Minkowski theorem is not extensible to forms of degree 10n + 5, where n is a non-negative integer. [ 8 ] On the other hand, Birch's theorem shows that if d is any odd natural number, then there is a number N ( d ) such that any form of degree d in more than N ( d ) variables represents ...

  8. Gödel's β function - Wikipedia

    en.wikipedia.org/wiki/Gödel's_β_function

    In mathematical logic, Gödel's β function is a function used to permit quantification over finite sequences of natural numbers in formal theories of arithmetic. The β function is used, in particular, in showing that the class of arithmetically definable functions is closed under primitive recursion, and therefore includes all primitive recursive functions.

  9. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]