Search results
Results From The WOW.Com Content Network
It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x. Leibniz's notation makes this relationship explicit by writing the derivative as: [ 1 ] d y d x . {\displaystyle {\frac {dy}{dx}}.}
[3] In addition, if c {\displaystyle c} is a positive integer, then there is no need for a branch cut: one may define f ( 0 ) = 0 {\displaystyle f(0)=0} , or define positive integral complex powers through complex multiplication, and show that f ′ ( z ) = c z c − 1 {\displaystyle f'(z)=cz^{c-1}} for all complex z {\displaystyle z} , from ...
Gottfried Wilhelm von Leibniz (1646–1716), German philosopher, mathematician, and namesake of this widely used mathematical notation in calculus.. In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively ...
The dilogarithm along the real axis. In mathematics, the dilogarithm (or Spence's function), denoted as Li 2 (z), is a particular case of the polylogarithm.Two related special functions are referred to as Spence's function, the dilogarithm itself:
Some authors allow any real , [1] [2] whereas others require that not be 0 or 1. [ 3 ] [ 4 ] The equation was first discussed in a work of 1695 by Jacob Bernoulli , after whom it is named. The earliest solution, however, was offered by Gottfried Leibniz , who published his result in the same year and whose method is the one still used today.
In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...
Clairaut, Alexis Claude (1734), "Solution de plusieurs problèmes où il s'agit de trouver des Courbes dont la propriété consiste dans une certaine relation entre leurs branches, exprimée par une Équation donnée.", Histoire de l'Académie Royale des Sciences: 196– 215.
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).