Search results
Results From The WOW.Com Content Network
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
^ Surface gravity derived from the mass m, the gravitational constant G and the radius r: Gm/r 2. ^ Escape velocity derived from the mass m, the gravitational constant G and the radius r: √ (2Gm)/r. ^ Orbital speed is calculated using the mean orbital radius and the orbital period, assuming a circular orbit. ^ Assuming a density of 2.0
The curvature of the Earth is evident in the horizon across the image, and the bases of the buildings on the far shore are below that horizon and hidden by the sea. The simplest model for the shape of the entire Earth is a sphere. The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius ...
The Hill sphere, or the sphere of gravitational influence, of Earth is about 1.5 million km (930,000 mi) in radius. [164] [n 11] This is the maximum distance at which Earth's gravitational influence is stronger than that of the more distant Sun and planets.
For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.
For Earth-orbiting satellites, the reference plane is usually the Earth's equatorial plane, and for satellites in solar orbits it is the ecliptic plane. The intersection is called the line of nodes , as it connects the reference body (the primary) with the ascending and descending nodes.
The planet Earth has a rather slight equatorial bulge; its equatorial diameter is about 43 km (27 mi) greater than its polar diameter, with a difference of about 1 ⁄ 298 of the equatorial diameter. If Earth were scaled down to a globe with an equatorial diameter of 1 metre (3.3 ft), that difference would be only 3 mm (0.12 in).
The orbits are ellipses, with foci F 1 and F 2 for Planet 1, and F 1 and F 3 for Planet 2. The Sun is at F 1.; The shaded areas A 1 and A 2 are equal, and are swept out in equal times by Planet 1's orbit.