Search results
Results From The WOW.Com Content Network
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then
which can be used to prove by mathematical induction that () is a natural number for all integer n ≥ 0 and all integer k, a fact that is not immediately obvious from formula (1). To the left and right of Pascal's triangle, the entries (shown as blanks) are all zero. Pascal's rule also gives rise to Pascal's triangle:
An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
V is the symmetry group of this cross: flipping it horizontally (a) or vertically (b) or both (ab) leaves it unchanged.A quarter-turn changes it. In two dimensions, the Klein four-group is the symmetry group of a rhombus and of rectangles that are not squares, the four elements being the identity, the vertical reflection, the horizontal reflection, and a 180° rotation.
The following is known about the dimension of a finite-dimensional division algebra A over a field K: dim A = 1 if K is algebraically closed, dim A = 1, 2, 4 or 8 if K is real closed, and; If K is neither algebraically nor real closed, then there are infinitely many dimensions in which there exist division algebras over K.
The key to the argument is the following Claim. The set V of all elements a of D such that a 2 ≤ 0 is a vector subspace of D of dimension n − 1.Moreover D = R ⊕ V as R-vector spaces, which implies that V generates D as an algebra.