When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    In mathematics, proof by contrapositive, or proof by contraposition, is a rule of inference used in proofs, where one infers a conditional statement from its contrapositive. [15] In other words, the conclusion "if A, then B" is inferred by constructing a proof of the claim "if not B, then not A" instead. More often than not, this approach is ...

  3. Contradiction - Wikipedia

    en.wikipedia.org/wiki/Contradiction

    A system will be said to be inconsistent if it yields the assertion of the unmodified variable p [S in the Newman and Nagel examples]. In other words, the notion of "contradiction" can be dispensed when constructing a proof of consistency; what replaces it is the notion of "mutually exclusive and exhaustive" classes.

  4. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    [3] A mathematical proof employing proof by contradiction usually proceeds as follows: The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of ...

  5. Modus tollens - Wikipedia

    en.wikipedia.org/wiki/Modus_tollens

    In propositional logic, modus tollens (/ ˈ m oʊ d ə s ˈ t ɒ l ɛ n z /) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") [2] and denying the consequent, [3] is a deductive argument form and a rule of inference.

  6. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Proof by contraposition infers the statement "if p then q" by establishing the logically equivalent contrapositive statement: "if not q then not p". For example, contraposition can be used to establish that, given an integer , if is even, then is even: Suppose is not even.

  7. Reductio ad absurdum - Wikipedia

    en.wikipedia.org/wiki/Reductio_ad_absurdum

    Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.

  8. Affirming the consequent - Wikipedia

    en.wikipedia.org/wiki/Affirming_the_consequent

    This is the contrapositive of the first statement, and it must be true if and only if the original statement is true. Example 2. If an animal is a dog, then it has four legs. My cat has four legs. Therefore, my cat is a dog.

  9. Counterfactual conditional - Wikipedia

    en.wikipedia.org/wiki/Counterfactual_conditional

    In the indicative example, the bolded words are present tense forms. In the counterfactual example, both words take their past tense form. This use of the past tense cannot have its ordinary temporal meaning, since it can be used with the adverb "tomorrow" without creating a contradiction.