When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    In mathematics, proof by contrapositive, or proof by contraposition, is a rule of inference used in proofs, where one infers a conditional statement from its contrapositive. [15] In other words, the conclusion "if A , then B " is inferred by constructing a proof of the claim "if not B , then not A " instead.

  3. Modus tollens - Wikipedia

    en.wikipedia.org/wiki/Modus_tollens

    It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument. The history of the inference rule modus tollens goes back to antiquity. [4]

  4. Contradiction - Wikipedia

    en.wikipedia.org/wiki/Contradiction

    A system will be said to be inconsistent if it yields the assertion of the unmodified variable p [S in the Newman and Nagel examples]. In other words, the notion of "contradiction" can be dispensed when constructing a proof of consistency; what replaces it is the notion of "mutually exclusive and exhaustive" classes.

  5. Rule of inference - Wikipedia

    en.wikipedia.org/wiki/Rule_of_inference

    For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics ), in the sense that if the premises are true (under ...

  6. Immediate inference - Wikipedia

    en.wikipedia.org/wiki/Immediate_inference

    Given a type A statement, "All S are P.", one can make the immediate inference that "All non-P are non-S" which is the contrapositive of the given statement. Given a type O statement, "Some S are not P.", one can make the immediate inference that "Some non-P are not non-S" which is the contrapositive of the given statement.

  7. Affirming the consequent - Wikipedia

    en.wikipedia.org/wiki/Affirming_the_consequent

    Example 1. One way to demonstrate the invalidity of this argument form is with a counterexample with true premises but an obviously false conclusion. For example: If someone lives in San Diego, then they live in California. Joe lives in California. Therefore, Joe lives in San Diego. There are many places to live in California other than San Diego.

  8. Reductio ad absurdum - Wikipedia

    en.wikipedia.org/wiki/Reductio_ad_absurdum

    Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical argument, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.

  9. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    Such a proof is again a refutation by contradiction. A typical example is the proof of the proposition "there is no smallest positive rational number": assume there is a smallest positive rational number q and derive a contradiction by observing that ⁠ q / 2 ⁠ is even smaller than q and still positive.