When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    A Riemann sum of over [,] with ... the method is the midpoint rule [2] [3] and gives a ... The example function has an easy-to-find anti-derivative so estimating the ...

  3. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    The process of finding the value of a sum is called integration. In technical language, integral calculus studies a certain linear operator. The Riemann sum inputs a function and outputs a function, which gives the algebraic sum of areas between the part of the graph of the input and the x-axis.

  4. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    A converging sequence of Riemann sums. The number in the upper left is the total area of the blue rectangles. They converge to the definite integral of the function. We are describing the area of a rectangle, with the width times the height, and we are adding the areas together.

  5. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    For this purpose it is possible to use the following fact: if we draw the circle with the sum of a and b as the diameter, then the height BH (from a point of their connection to crossing with a circle) equals their geometric mean. The similar geometrical construction solves a problem of a quadrature for a parallelogram and a triangle.

  6. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...

  7. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.

  8. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .

  9. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The value of the surface integral is the sum of the field at all points on the surface. This can be achieved by splitting the surface into surface elements, which provide the partitioning for Riemann sums. [46] For an example of applications of surface integrals, consider a vector field v on a surface S; that is, for each point x in S, v(x) is ...