Search results
Results From The WOW.Com Content Network
Methane vapor pressure vs. temperature. Uses formula log 10 P mm Hg = 6.61184 − 389.93 266.00 + T ∘ C {\displaystyle \log _{10}P_{\text{mm Hg}}=6.61184-{\frac {389.93}{266.00+T_{^{\circ }{\text{C}}}}}} given in Lange's Handbook of Chemistry , 10th ed. Note that formula loses accuracy near T crit = −82.6 °C
That is, observed temperatures above 60 °F (or the base temperature used) typically correlate with a correction factor below "1", while temperatures below 60 °F correlate with a factor above "1". This concept lies in the basis for the kinetic theory of matter and thermal expansion of matter , which states as the temperature of a substance ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
At IUPAC standard temperature and pressure (0 °C and 100 kPa), dry air has a density of approximately 1.2754 kg/m 3. At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3.
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2] Bromobenzene: 1.49 156.0 6. ...
1 Nm 3 of any gas (measured at 0 °C and 1 atmosphere of absolute pressure) equals 37.326 scf of that gas (measured at 60 °F and 1 atmosphere of absolute pressure). 1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and ...
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
Since the density of dry air at 101.325 kPa at 20 °C is [10] 0.001205 g/cm 3 and that of water is 0.998203 g/cm 3 we see that the difference between true and apparent relative densities for a substance with relative density (20 °C/20 °C) of about 1.100 would be 0.000120. Where the relative density of the sample is close to that of water (for ...