Ad
related to: what is a check valve pressure drop calculator engineering toolbox 2
Search results
Results From The WOW.Com Content Network
For air with a heat capacity ratio =, then =; other gases have in the range 1.09 (e.g. butane) to 1.67 (monatomic gases), so the critical pressure ratio varies in the range < / <, which means that, depending on the gas, choked flow usually occurs when the downstream static pressure drops to below 0.487 to 0.587 times the absolute pressure in ...
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]
A swing check valve (or tilting disc check valve) is a check valve in which the disc, the movable part to block the flow, swings on a hinge or trunnion, either onto the seat to block reverse flow or off the seat to allow forward flow. The seat opening cross-section may be perpendicular to the centerline between the two ports or at an angle.
[1] [2] [3] A key question is the uniformity of the flow distribution and pressure drop. Fig. 1. Manifold arrangement for flow distribution. Traditionally, most of theoretical models are based on Bernoulli equation after taking the frictional losses into account using a control volume (Fig. 2).
Pressure drop (often abbreviated as "dP" or "ΔP") [1] is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit (such as a channel, pipe, or tube).
Sometimes called a check valve or a backflow preventer, a chemigation valve is an apparatus designed to protect water supplies from agricultural chemicals used during chemigation, the application of chemicals such as fertilizers and pesticides through irrigation water. [1]
In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network.
Less water supply pressure is required with this looped main configuration as the hydraulic pressure drop is lower through the main as water can flow in two directions to any sprinkler. The branch lines may terminate in a dead end or may connect at each end to different (usually opposite) points on the looped main.