When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial ( x – r ) can be factored out of the polynomial using polynomial long division , resulting in a polynomial of lower degree ...

  3. Hilbert's Nullstellensatz - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_Nullstellensatz

    In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields.

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Root-finding of polynomials – Algorithms for finding zeros of polynomials; Square-free polynomial – Polynomial with no repeated root; Vieta's formulas – Relating coefficients and roots of a polynomial; Cohn's theorem relating the roots of a self-inversive polynomial with the roots of the reciprocal polynomial of its derivative.

  5. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    If =, then it says a rational root of a monic polynomial over integers is an integer (cf. the rational root theorem). To see the statement, let a / b {\displaystyle a/b} be a root of f {\displaystyle f} in F {\displaystyle F} and assume a , b {\displaystyle a,b} are relatively prime .

  6. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    The fundamental theorem of algebra tells us that if we have a non-constant polynomial with rational coefficients (or equivalently, by clearing denominators, with integer coefficients) then that polynomial will have a root in the complex numbers.

  7. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    Zermelo–Fraenkel set theory with the axiom of choice guarantees the existence of a basis of this vector space: there exists a set B of real numbers such that every real number can be written uniquely as a finite linear combination of elements of this set, using rational coefficients only, and such that no element of B is a rational linear ...

  8. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    It has zeros at the negative even integers; that is, ζ(s) = 0 when s is one of −2, −4, −6, .... These are called its trivial zeros. The zeta function is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that:

  9. Weil conjectures - Wikipedia

    en.wikipedia.org/wiki/Weil_conjectures

    Deligne's theorem states that if f is a morphism of schemes of finite type over a finite field, then R i f! takes mixed sheaves of weight ≤ β to mixed sheaves of weight ≤ β + i. The original Weil conjectures follow by taking f to be a morphism from a smooth projective variety to a point and considering the constant sheaf Q ℓ on the variety.