Ad
related to: dose response in toxicology
Search results
Results From The WOW.Com Content Network
The dose–response relationship, or exposure–response relationship, describes the magnitude of the response of an organism, as a function of exposure (or doses) to a stimulus or stressor (usually a chemical) after a certain exposure time. [1] Dose–response relationships can be described by dose–response curves. This is explained further ...
Threshold dose is a dose of drug barely adequate to produce a biological effect in an animal. In dose-response assessment, the term ‘threshold dose’ is refined into several terminologies, such as NOEL, NOAEL, and LOAEL. They define the limits of doses resulting in biological responses or toxic effects. [3]
In toxicology, hormesis is a dose-response phenomenon to xenobiotics or other stressors. In physiology and nutrition, hormesis has regions extending from low-dose deficiencies to homeostasis, and potential toxicity at high levels. [6]
Toxicology is a scientific discipline, overlapping with biology, chemistry, ... Most chemicals display a classic dose response curve – at a low dose (below a ...
The EC 50 of a quantal dose response curve represents the concentration of a compound where 50% of the population exhibit a response, [5] after a specified exposure duration. For clarification, a graded dose response curve shows the graded effect of the drug (y axis) over the dose of the drug (x axis) in one or an average of subjects.
The threshold dose-response model is widely viewed as the most dominant model in toxicology. [6] An alternative type of model in toxicology is the linear no-threshold model (LNT), while hormesis correspond to the existence of opposite effects at low vs. high dose, which usually gives a U- or inverted U-shaped dose response curve.
In toxicology it is specifically the highest tested dose or concentration of a substance (i.e. a drug or chemical) or agent (e.g. radiation), at which no such adverse effect is found in exposed test organisms where higher doses or concentrations resulted in an adverse effect. [3] [4] [5]
Toxciant concentration is on the X-axis and biological response is on the Y-axis. Point estimation is a technique to predict population parameters based on available sample data and can be used to relate the mass based concentration to a toxicity based metric. Point estimates in toxicology are frequently response endpoints on a dose response curve.