Ads
related to: magnetism facts for kids science project template- About LEGO® Education
Learn more about our mission
to transform formal education.
- BricQ Motion Prime
An engaging introductory hands-on
STEAM solution available now.
- LEGO® Education Science
Increase student engagement
with the new science solution.
- BricQ For All Grades
Find sets suitable for all grade
levels and learning stages.
- About LEGO® Education
Search results
Results From The WOW.Com Content Network
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
A magnet is a material or object that produces a magnetic field.This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
Magnets exert forces and torques on each other through the interaction of their magnetic fields.The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the mater
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
(A non-circuit example would be a magnet with a straight cylindrical core.) To determine the force between two electromagnets (or permanent magnets) in these cases, a special analogy called a magnetic-charge model can be used. In this model, it is assumed that the magnets have well-defined "poles" where the field lines emerge from the core, and ...
Hence the magnetization of an anisotropic magnet is harder to destroy at low temperature and the temperature dependence of the magnetization deviates accordingly from the Bloch T 3/2 law. All real magnets are anisotropic to some extent. Near the Curie temperature, (),