When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    For a circular cone with radius r and height h, the base is a circle of area and so the formula for volume becomes [6] V = 1 3 π r 2 h . {\displaystyle V={\frac {1}{3}}\pi r^{2}h.} Slant height

  3. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.

  4. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    This is a list of volume formulas of basic shapes: [4]: 405–406 Cone – , where is the base's radius; Cube – , where is the side's length;; Cuboid – , where , , and are the sides' length;

  5. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    The following passage from page 673 shows how Hamilton uses biquaternion algebra and vectors from quaternions to produce hyperboloids from the equation of a sphere: ... the equation of the unit sphere ρ 2 + 1 = 0, and change the vector ρ to a bivector form, such as σ + τ √ −1. The equation of the sphere then breaks up into the system of ...

  6. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus. The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":

  7. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...

  8. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    The disk-shaped cross-sectional area of the sphere is equal to the ring-shaped cross-sectional area of the cylinder part that lies outside the cone. If one knows that the volume of a cone is (), then one can use Cavalieri's principle to derive the fact that the volume of a sphere is , where is the radius.

  9. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...