Search results
Results From The WOW.Com Content Network
Nayar et al. correlated the data with the following equation = (+ +) where γ sw is the surface tension of seawater in mN/m, γ w is the surface tension of water in mN/m, S is the reference salinity [41] in g/kg, and t is temperature in degrees Celsius. The average absolute percentage deviation between measurements and the correlation was 0.19% ...
The equation is named after Edward Wight Washburn; [1] also known as Lucas–Washburn equation, considering that Richard Lucas [2] wrote a similar paper three years earlier, or the Bell-Cameron-Lucas-Washburn equation, considering J.M. Bell and F.K. Cameron's discovery of the form of the equation in 1906.
Shallow-water equations can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and oceans as well as gravity waves in a smaller domain (e.g. surface waves in a bath). In order for shallow-water equations to be valid, the wavelength of the phenomenon they are supposed to model has to be much larger than the depth of the ...
Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to normal n). F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area.
The surface of a fluid is curved because exposed molecules on the surface have fewer neighboring interactions, resulting in a net force that contracts the surface. There exists a pressure difference either side of this curvature, and when this balances out the pressure due to gravity, one can rearrange to find the capillary length.
There is a surface tension at the surface of a liquid that depends on temperature, typically as the temperature increases the surface tension decreases. Thus if due to a small fluctuation temperature, one part of the surface is hotter than another, there will be flow from the hotter part to the colder part, driven by this difference in surface ...
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The surface tension gradient can be caused by concentration gradient or by a temperature gradient (surface tension is a function of temperature). In simple cases, the speed of the flow u ≈ Δ γ / μ {\displaystyle u\approx \Delta \gamma /\mu } , where Δ γ {\displaystyle \Delta \gamma } is the difference in surface tension and μ ...