Search results
Results From The WOW.Com Content Network
If a system of equations is inconsistent, then the equations cannot be true together leading to contradictory information, such as the false statements 2 = 1, or + = and + = (which implies 5 = 6). Both types of equation system, inconsistent and consistent, can be any of overdetermined (having more equations than unknowns), underdetermined ...
It is inconsistent if and only if 0 = 1 is a linear combination (with polynomial coefficients) of the equations (this is Hilbert's Nullstellensatz). If an underdetermined system of t equations in n variables ( t < n ) has solutions, then the set of all complex solutions is an algebraic set of dimension at least n - t .
The equations 3x + 2y = 6 and 3x + 2y = 12 are inconsistent. A linear system is inconsistent if it has no solution, and otherwise, it is said to be consistent. [7] When the system is inconsistent, it is possible to derive a contradiction from the equations, that may always be rewritten as the statement 0 = 1. For example, the equations
The number of independent equations in the original system is the number of non-zero rows in the echelon form. The system is inconsistent (no solution) if and only if the last non-zero row in echelon form has only one non-zero entry that is in the last column (giving an equation 0 = c where c is a non-zero constant).
For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an overdetermined system). Conversely, any of those three cases may or may not be indeterminate.
A system of equations is said to be inconsistent when there are no solutions and it is called indeterminate when there is more than one solution. For linear equations, an indeterminate system will have infinitely many solutions (if it is over an infinite field), since the solutions can be expressed in terms of one or more parameters that can ...
By the Rouché–Capelli theorem, the system of equations is inconsistent, meaning it has no solutions, if the rank of the augmented matrix (the coefficient matrix augmented with an additional column consisting of the vector b) is greater than the rank of the coefficient matrix. If, on the other hand, the ranks of these two matrices are equal ...
A set of axioms is (simply) consistent if there is no statement such that both the statement and its negation are provable from the axioms, and inconsistent otherwise. That is to say, a consistent axiomatic system is one that is free from contradiction. Peano arithmetic is provably consistent from ZFC, but not from within itself.