When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse demand function - Wikipedia

    en.wikipedia.org/wiki/Inverse_demand_function

    The marginal revenue function is the first derivative of the total revenue function or MR = 120 - Q. Note that in this linear example the MR function has the same y-intercept as the inverse demand function, the x-intercept of the MR function is one-half the value of the demand function, and the slope of the MR function is twice that of the ...

  3. Total revenue - Wikipedia

    en.wikipedia.org/wiki/Total_revenue

    Price and total revenue have a negative relationship when demand is elastic (price elasticity > 1), which means that increases in price will lead to decreases in total revenue. Price changes will not affect total revenue when the demand is unit elastic (price elasticity = 1). Maximum total revenue is achieved where the elasticity of demand is 1.

  4. Marginal revenue - Wikipedia

    en.wikipedia.org/wiki/Marginal_revenue

    [1] [3] [8] The marginal revenue (the increase in total revenue) is the price the firm gets on the additional unit sold, less the revenue lost by reducing the price on all other units that were sold prior to the decrease in price. Marginal revenue is the concept of a firm sacrificing the opportunity to sell the current output at a certain price ...

  5. Profit maximization - Wikipedia

    en.wikipedia.org/wiki/Profit_maximization

    In this case one can use calculus to maximize profit with respect to input usage levels, subject to the input cost functions and the production function. The first order condition for each input equates the marginal revenue product of the input (the increment to revenue from selling the product caused by an increment to the amount of the input ...

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    [56]: 37 In analytic geometry, the study of graphs of functions, calculus is used to find high points and low points (maxima and minima), slope, concavity and inflection points. Calculus is also used to find approximate solutions to equations; in practice, it is the standard way to solve differential equations and do root finding in most ...

  7. Mathematical economics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_economics

    Mathematical economics is the application of mathematical methods to represent theories and analyze problems in economics.Often, these applied methods are beyond simple geometry, and may include differential and integral calculus, difference and differential equations, matrix algebra, mathematical programming, or other computational methods.

  8. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete calculus or the calculus of discrete functions, is the mathematical study of incremental change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.

  9. Mean of a function - Wikipedia

    en.wikipedia.org/wiki/Mean_of_a_function

    In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().