Search results
Results From The WOW.Com Content Network
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]
In fluid mechanics, added mass or virtual mass is the inertia added to a system because an accelerating or decelerating body must move (or deflect) some volume of surrounding fluid as it moves through it. Added mass is a common issue because the object and surrounding fluid cannot occupy the same physical space simultaneously.
A definition of "matter" based on its physical and chemical structure is: matter is made up of atoms. [17] Such atomic matter is also sometimes termed ordinary matter. As an example, deoxyribonucleic acid molecules (DNA) are matter under this definition because they are made of atoms.
If this rule is interpreted as saying that straight-line motion is an indication of zero net force, the rule does not identify inertial reference frames because straight-line motion can be observed in a variety of frames. If the rule is interpreted as defining an inertial frame, then being able to determine when zero net force is applied is ...
The moment of inertia plays the role in rotational kinetics that mass (inertia) plays in linear kinetics—both characterize the resistance of a body to changes in its motion. The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis.
The universe, as represented by the average motion of distant galaxies, does not appear to rotate relative to local inertial frames. Newton's gravitational constant G is a dynamical field. An isolated body in otherwise empty space has no inertia. Local inertial frames are affected by the cosmic motion and distribution of matter.
The dichotomy between kinetic energy and potential energy can be traced back to Aristotle's concepts of actuality and potentiality. [ 3 ] The principle of classical mechanics that E ∝ mv 2 is conserved was first developed by Gottfried Leibniz and Johann Bernoulli , who described kinetic energy as the living force or vis viva .
Because the air at the surface has near-zero velocity but the air away from the surface is moving, there is a thin boundary layer in which air close to the surface is subjected to a shearing motion. [ 72 ] [ 73 ] The air's viscosity resists the shearing, giving rise to a shear stress at the airfoil's surface called skin friction drag .