Search results
Results From The WOW.Com Content Network
FarPoint Spread for Windows Forms is a Microsoft Excel-compatible spreadsheet component for Windows Forms applications developed using Microsoft Visual Studio and the .NET Framework. Developers use it to add grids and spreadsheets to their applications, and to bind them to data sources. [ 5 ]
In mathematics, an EP matrix (or range-Hermitian matrix [1] or RPN matrix [2]) is a square matrix A whose range is equal to the range of its conjugate transpose A*. Another equivalent characterization of EP matrices is that the range of A is orthogonal to the nullspace of A. Thus, EP matrices are also known as RPN (Range Perpendicular to ...
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
Vectorization is a unitary transformation from the space of n×n matrices with the Frobenius (or Hilbert–Schmidt) inner product to C n 2: (†) = † (), where the superscript † denotes the conjugate transpose.
The conjugate transpose "adjoint" matrix should not be confused with the adjugate, (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.
Presented here are two algorithms: the first, [8] simpler one, computes what is known as the optimal string alignment distance or restricted edit distance, [7] while the second one [9] computes the Damerau–Levenshtein distance with adjacent transpositions.
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.