Ads
related to: euclidean tiling family tree
Search results
Results From The WOW.Com Content Network
An example of uniform tiling in the Archeological Museum of Seville, Sevilla, Spain: rhombitrihexagonal tiling Regular tilings and their duals drawn by Max Brückner in Vielecke und Vielflache (1900) This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane , and their dual tilings.
For example: 3 6; 3 6; 3 4.6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling. Broken down, 3 6 ; 3 6 (both of different transitivity class), or (3 6 ) 2 , tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided ...
There are 4 symmetry classes of reflection on the sphere, and three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are also listed. (Increasing any of the numbers defining a hyperbolic or Euclidean tiling makes another hyperbolic tiling.) Point groups:
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra; these can be considered uniform tilings of the sphere.
This page was last edited on 5 November 2014, at 22:50 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic . [ 3 ] The tilings obtained from an aperiodic set of tiles are often called aperiodic tilings , though strictly speaking it is the tiles themselves that are ...
Euclidean kisrhombille tiling. In geometry, a kisrhombille is a uniform tiling of rhombic faces, divided by central points into four triangles. Examples: 3-6 kisrhombille – Euclidean plane; 3-7 kisrhombille – hyperbolic plane; 3-8 kisrhombille – hyperbolic plane; 4-5 kisrhombille – hyperbolic plane
The Hirschhorn tiling, published by Michael D. Hirschhorn and D. C. Hunt in 1985, is a pentagon tiling using irregular pentagons: regular pentagons cannot tile the Euclidean plane as the internal angle of a regular pentagon, 3 π / 5 , is not a divisor of 2 π.