Search results
Results From The WOW.Com Content Network
Multi-key quicksort, also known as three-way radix quicksort, [1] is an algorithm for sorting strings.This hybrid of quicksort and radix sort was originally suggested by P. Shackleton, as reported in one of C.A.R. Hoare's seminal papers on quicksort; [2]: 14 its modern incarnation was developed by Jon Bentley and Robert Sedgewick in the mid-1990s. [3]
This is done by merging runs until certain criteria are fulfilled. Timsort has been Python's standard sorting algorithm since version 2.3 (since version 3.11 using the Powersort merge policy [5]), and is used to sort arrays of non-primitive type in Java SE 7, [6] on the Android platform, [7] in GNU Octave, [8] on V8, [9] and Swift. [10]
Stability is also not an issue if all keys are different. Unstable sorting algorithms can be specially implemented to be stable. One way of doing this is to artificially extend the key comparison so that comparisons between two objects with otherwise equal keys are decided using the order of the entries in the original input list as a tie-breaker.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Conceptually, the merge sort algorithm consists of two steps: Recursively divide the list into sublists of (roughly) equal length, until each sublist contains only one element, or in the case of iterative (bottom up) merge sort, consider a list of n elements as n sub-lists of size 1. A list containing a single element is, by definition, sorted.
Example: The following table shows the steps for sorting the sequence {3, 7, 4, 9, 5, 2, 6, 1}. In each step, the key under consideration is underlined. The key that was moved (or left in place because it was the biggest yet considered) in the previous step is marked with an asterisk.
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
Counting sort is not a comparison sort; it uses key values as indexes into an array and the Ω(n log n) lower bound for comparison sorting will not apply. [1] Bucket sort may be used in lieu of counting sort, and entails a similar time analysis. However, compared to counting sort, bucket sort requires linked lists, dynamic arrays, or a large ...