Search results
Results From The WOW.Com Content Network
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
Numberphile is an educational YouTube channel featuring videos that explore topics from a variety of fields of mathematics. [2] [3] In the early days of the channel, each video focused on a specific number, but the channel has since expanded its scope, [4] featuring videos on more advanced mathematical concepts such as Fermat's Last Theorem, the Riemann hypothesis [5] and Kruskal's tree ...
The original proof that the Hausdorff–Young inequality cannot be extended to > is probabilistic. The proof of the de Leeuw–Kahane–Katznelson theorem (which is a stronger claim) is partially probabilistic. [1] The first construction of a Salem set was probabilistic. [2] Only in 1981 did Kaufman give a deterministic construction.
The expression "mathematical proof" is used by lay people to refer to using mathematical methods or arguing with mathematical objects, such as numbers, to demonstrate something about everyday life, or when data used in an argument is numerical. It is sometimes also used to mean a "statistical proof" (below), especially when used to argue from data.
Pages which contain only proofs (of claims made in other articles) should be placed in the subcategory Category:Article proofs. Pages which contain theorems and their proofs should be placed in the subcategory Category:Articles containing proofs. Articles related to automatic theorem proving should be placed in Category:Automated theorem proving.
List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
Many mathematicians then attempted to construct elementary proofs of the theorem, without success. G. H. Hardy expressed strong reservations; he considered that the essential "depth" of the result ruled out elementary proofs: No elementary proof of the prime number theorem is known, and one may ask whether it is reasonable to expect one.
Proof theory is a major branch [1] of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed ...